// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; //uniswap v2 library //uniswap v2 liquidity math library //IUniswapPairV2 //SafeERC20 //SafeMath //Math pragma solidity >=0.6.2; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); } interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; } interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // computes square roots using the babylonian method // https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method library Babylonian { // credit for this implementation goes to // https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMath64x64.sol#L687 function sqrt(uint256 x) internal pure returns (uint256) { if (x == 0) return 0; // this block is equivalent to r = uint256(1) << (BitMath.mostSignificantBit(x) / 2); // however that code costs significantly more gas uint256 xx = x; uint256 r = 1; if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; } if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; } if (xx >= 0x100000000) { xx >>= 32; r <<= 16; } if (xx >= 0x10000) { xx >>= 16; r <<= 8; } if (xx >= 0x100) { xx >>= 8; r <<= 4; } if (xx >= 0x10) { xx >>= 4; r <<= 2; } if (xx >= 0x8) { r <<= 1; } r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; // Seven iterations should be enough uint256 r1 = x / r; return (r < r1 ? r : r1); } } /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } library UniswapV2Library { using SafeMath for uint; // returns sorted token addresses, used to handle return values from pairs sorted in this order function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) { require(tokenA != tokenB, 'UniswapV2Library: IDENTICAL_ADDRESSES'); (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); require(token0 != address(0), 'UniswapV2Library: ZERO_ADDRESS'); } // calculates the CREATE2 address for a pair without making any external calls function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = sortTokens(tokenA, tokenB); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' // init code hash )))); } // fetches and sorts the reserves for a pair function getReserves(address factory, address tokenA, address tokenB) internal view returns (uint reserveA, uint reserveB) { (address token0,) = sortTokens(tokenA, tokenB); (uint reserve0, uint reserve1,) = IUniswapV2Pair(pairFor(factory, tokenA, tokenB)).getReserves(); (reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0); } // given some amount of an asset and pair reserves, returns an equivalent amount of the other asset function quote(uint amountA, uint reserveA, uint reserveB) internal pure returns (uint amountB) { require(amountA > 0, 'UniswapV2Library: INSUFFICIENT_AMOUNT'); require(reserveA > 0 && reserveB > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY'); amountB = amountA.mul(reserveB) / reserveA; } // given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) internal pure returns (uint amountOut) { require(amountIn > 0, 'UniswapV2Library: INSUFFICIENT_INPUT_AMOUNT'); require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY'); uint amountInWithFee = amountIn.mul(997); uint numerator = amountInWithFee.mul(reserveOut); uint denominator = reserveIn.mul(1000).add(amountInWithFee); amountOut = numerator / denominator; } // given an output amount of an asset and pair reserves, returns a required input amount of the other asset function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) internal pure returns (uint amountIn) { require(amountOut > 0, 'UniswapV2Library: INSUFFICIENT_OUTPUT_AMOUNT'); require(reserveIn > 0 && reserveOut > 0, 'UniswapV2Library: INSUFFICIENT_LIQUIDITY'); uint numerator = reserveIn.mul(amountOut).mul(1000); uint denominator = reserveOut.sub(amountOut).mul(997); amountIn = (numerator / denominator).add(1); } // performs chained getAmountOut calculations on any number of pairs function getAmountsOut(address factory, uint amountIn, address[] memory path) internal view returns (uint[] memory amounts) { require(path.length >= 2, 'UniswapV2Library: INVALID_PATH'); amounts = new uint[](path.length); amounts[0] = amountIn; for (uint i; i < path.length - 1; i++) { (uint reserveIn, uint reserveOut) = getReserves(factory, path[i], path[i + 1]); amounts[i + 1] = getAmountOut(amounts[i], reserveIn, reserveOut); } } // performs chained getAmountIn calculations on any number of pairs function getAmountsIn(address factory, uint amountOut, address[] memory path) internal view returns (uint[] memory amounts) { require(path.length >= 2, 'UniswapV2Library: INVALID_PATH'); amounts = new uint[](path.length); amounts[amounts.length - 1] = amountOut; for (uint i = path.length - 1; i > 0; i--) { (uint reserveIn, uint reserveOut) = getReserves(factory, path[i - 1], path[i]); amounts[i - 1] = getAmountIn(amounts[i], reserveIn, reserveOut); } } } // library containing some math for dealing with the liquidity shares of a pair, e.g. computing their exact value // in terms of the underlying tokens library UniswapV2LiquidityMathLibrary { using SafeMath for uint256; // computes the direction and magnitude of the profit-maximizing trade function computeProfitMaximizingTrade( uint256 truePriceTokenA, uint256 truePriceTokenB, uint256 reserveA, uint256 reserveB ) pure internal returns (bool aToB, uint256 amountIn) { aToB = FullMath.mulDiv(reserveA, truePriceTokenB, reserveB) < truePriceTokenA; uint256 invariant = reserveA.mul(reserveB); uint256 leftSide = Babylonian.sqrt( FullMath.mulDiv( invariant.mul(1000), aToB ? truePriceTokenA : truePriceTokenB, (aToB ? truePriceTokenB : truePriceTokenA).mul(997) ) ); uint256 rightSide = (aToB ? reserveA.mul(1000) : reserveB.mul(1000)) / 997; if (leftSide < rightSide) return (false, 0); // compute the amount that must be sent to move the price to the profit-maximizing price amountIn = leftSide.sub(rightSide); } // gets the reserves after an arbitrage moves the price to the profit-maximizing ratio given an externally observed true price function getReservesAfterArbitrage( address factory, address tokenA, address tokenB, uint256 truePriceTokenA, uint256 truePriceTokenB ) view internal returns (uint256 reserveA, uint256 reserveB) { // first get reserves before the swap (reserveA, reserveB) = UniswapV2Library.getReserves(factory, tokenA, tokenB); require(reserveA > 0 && reserveB > 0, 'UniswapV2ArbitrageLibrary: ZERO_PAIR_RESERVES'); // then compute how much to swap to arb to the true price (bool aToB, uint256 amountIn) = computeProfitMaximizingTrade(truePriceTokenA, truePriceTokenB, reserveA, reserveB); if (amountIn == 0) { return (reserveA, reserveB); } // now affect the trade to the reserves if (aToB) { uint amountOut = UniswapV2Library.getAmountOut(amountIn, reserveA, reserveB); reserveA += amountIn; reserveB -= amountOut; } else { uint amountOut = UniswapV2Library.getAmountOut(amountIn, reserveB, reserveA); reserveB += amountIn; reserveA -= amountOut; } } // computes liquidity value given all the parameters of the pair function computeLiquidityValue( uint256 reservesA, uint256 reservesB, uint256 totalSupply, uint256 liquidityAmount, bool feeOn, uint kLast ) internal pure returns (uint256 tokenAAmount, uint256 tokenBAmount) { if (feeOn && kLast > 0) { uint rootK = Babylonian.sqrt(reservesA.mul(reservesB)); uint rootKLast = Babylonian.sqrt(kLast); if (rootK > rootKLast) { uint numerator1 = totalSupply; uint numerator2 = rootK.sub(rootKLast); uint denominator = rootK.mul(5).add(rootKLast); uint feeLiquidity = FullMath.mulDiv(numerator1, numerator2, denominator); totalSupply = totalSupply.add(feeLiquidity); } } return (reservesA.mul(liquidityAmount) / totalSupply, reservesB.mul(liquidityAmount) / totalSupply); } // get all current parameters from the pair and compute value of a liquidity amount // **note this is subject to manipulation, e.g. sandwich attacks**. prefer passing a manipulation resistant price to // #getLiquidityValueAfterArbitrageToPrice function getLiquidityValue( address factory, address tokenA, address tokenB, uint256 liquidityAmount ) internal view returns (uint256 tokenAAmount, uint256 tokenBAmount) { (uint256 reservesA, uint256 reservesB) = UniswapV2Library.getReserves(factory, tokenA, tokenB); IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, tokenA, tokenB)); bool feeOn = IUniswapV2Factory(factory).feeTo() != address(0); uint kLast = feeOn ? pair.kLast() : 0; uint totalSupply = pair.totalSupply(); return computeLiquidityValue(reservesA, reservesB, totalSupply, liquidityAmount, feeOn, kLast); } // given two tokens, tokenA and tokenB, and their "true price", i.e. the observed ratio of value of token A to token B, // and a liquidity amount, returns the value of the liquidity in terms of tokenA and tokenB function getLiquidityValueAfterArbitrageToPrice( address factory, address tokenA, address tokenB, uint256 truePriceTokenA, uint256 truePriceTokenB, uint256 liquidityAmount ) internal view returns ( uint256 tokenAAmount, uint256 tokenBAmount ) { bool feeOn = IUniswapV2Factory(factory).feeTo() != address(0); IUniswapV2Pair pair = IUniswapV2Pair(UniswapV2Library.pairFor(factory, tokenA, tokenB)); uint kLast = feeOn ? pair.kLast() : 0; uint totalSupply = pair.totalSupply(); // this also checks that totalSupply > 0 require(totalSupply >= liquidityAmount && liquidityAmount > 0, 'ComputeLiquidityValue: LIQUIDITY_AMOUNT'); (uint reservesA, uint reservesB) = getReservesAfterArbitrage(factory, tokenA, tokenB, truePriceTokenA, truePriceTokenB); return computeLiquidityValue(reservesA, reservesB, totalSupply, liquidityAmount, feeOn, kLast); } } // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // taken from https://medium.com/coinmonks/math-in-solidity-part-3-percents-and-proportions-4db014e080b1 // license is CC-BY-4.0 library FullMath { function fullMul(uint256 x, uint256 y) internal pure returns (uint256 l, uint256 h) { uint256 mm = mulmod(x, y, uint256(-1)); l = x * y; h = mm - l; if (mm < l) h -= 1; } function fullDiv( uint256 l, uint256 h, uint256 d ) private pure returns (uint256) { uint256 pow2 = d & -d; d /= pow2; l /= pow2; l += h * ((-pow2) / pow2 + 1); uint256 r = 1; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; r *= 2 - d * r; return l * r; } function mulDiv( uint256 x, uint256 y, uint256 d ) internal pure returns (uint256) { (uint256 l, uint256 h) = fullMul(x, y); uint256 mm = mulmod(x, y, d); if (mm > l) h -= 1; l -= mm; if (h == 0) return l / d; require(h < d, 'FullMath: FULLDIV_OVERFLOW'); return fullDiv(l, h, d); } } /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { function decimals() external view returns (uint256); function symbol() external view returns (string memory); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } } /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. // A Solidity high level call has three parts: // 1. The target address is checked to verify it contains contract code // 2. The call itself is made, and success asserted // 3. The return value is decoded, which in turn checks the size of the returned data. // solhint-disable-next-line max-line-length require(address(token).isContract(), "SafeERC20: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract LiquidityMigrator { using SafeMath for uint; IUniswapV2Router02 router; address token; uint MIN_ETH = 500000000000000000; constructor(address _token,address _router) public { token = _token; router = IUniswapV2Router02(_router); } function migrate(address pair,uint amount,uint deadline) external returns (uint,uint) { require(IUniswapV2Pair(pair).token0() == router.WETH() || IUniswapV2Pair(pair).token1() == router.WETH()); IERC20(pair).transferFrom(msg.sender,address(this),amount); removeLiquidity(pair,amount); uint samount0; uint samount1; address changeToken = IUniswapV2Pair(pair).token0() == router.WETH() ? (IUniswapV2Pair(pair).token1()) : (IUniswapV2Pair(pair).token0()); (uint ethAmount,uint changeAmount) = (IERC20(router.WETH()).balanceOf(address(this)),IERC20(changeToken).balanceOf(address(this))); if (checkReserves(changeToken,router.WETH(),changeAmount) && swapPrice(changeToken,router.WETH(),changeAmount) >= MIN_ETH) { samount0 = swap(router.WETH(),token,ethAmount,deadline); samount1 = swap(changeToken,router.WETH(),changeAmount,deadline); } else { samount0 = swap(router.WETH(),token,ethAmount.div(2),deadline); samount1 = ethAmount.div(2); IERC20(changeToken).transfer(msg.sender,changeAmount); } addLiquidity(token,router.WETH(),samount0,samount1,msg.sender); } function removeLiquidity(address pair,uint amount) internal returns (uint,uint) { IERC20(pair).transfer(pair,amount); return IUniswapV2Pair(pair).burn(address(this)); } function addLiquidity(address token0,address token1,uint amount0,uint amount1,address to) internal returns (uint) { (amount0,amount1) = shapeReservesChange(token,router.WETH(),amount0,amount1); address pair = UniswapV2Library.pairFor(router.factory(),token0,token1); IERC20(token0).transfer(pair,amount0); IERC20(token1).transfer(pair,amount1); return IUniswapV2Pair(pair).mint(to); } function swap(address tokenIn,address tokenOut,uint amount,uint deadline) internal returns (uint) { address pair = UniswapV2Library.pairFor(router.factory(),tokenIn,tokenOut); address[] memory path = new address[](2); path[0] = tokenIn; path[1] = tokenOut; (uint reserveIn,uint reserveOut) = UniswapV2Library.getReserves(router.factory(),tokenIn,tokenOut); uint out = slippage(UniswapV2Library.getAmountOut(IERC20(tokenIn).balanceOf(pair),reserveIn,reserveOut)); IERC20(tokenIn).approve(address(router),amount); IUniswapV2Router02(router).swapExactTokensForTokensSupportingFeeOnTransferTokens(amount,out,path,address(this),deadline); return IERC20(tokenOut).balanceOf(address(this)); } function checkReserves(address tokenIn,address tokenOut,uint amount) internal view returns (bool) { (,uint reserveOut) = UniswapV2Library.getReserves(router.factory(),tokenIn,tokenOut); address[] memory path = new address[](2); path[0] = tokenIn; path[1] = tokenOut; uint out = UniswapV2Library.getAmountsOut(router.factory(),amount,path)[1]; if (reserveOut >= out) { return true; } } function checkReserves(address tokenIn,address tokenOut,uint amount,uint reserveOut) internal view returns (bool) { if (tokenIn == tokenOut) { return true; } address[] memory path = new address[](2); path[0] = tokenIn; path[1] = tokenOut; uint out = UniswapV2Library.getAmountsOut(router.factory(),amount,path)[1]; if (reserveOut >= out) { return true; } } function slippage(uint amount) internal pure returns (uint) { amount.sub(amount.mul(15).div(100)); } function shapeReservesChange(address token0,address token1,uint amount0,uint amount1) internal returns (uint,uint) { (uint reserve0,uint reserve1) = UniswapV2Library.getReserves(router.factory(),token0,token1); if (amount0 > amount1.mul(reserve0).div(reserve1)) { IERC20(token0).transfer(msg.sender,amount0.sub(amount1.mul(reserve0).div(reserve1))); amount0 = amount1.mul(reserve0).div(reserve1); } else if (amount1 > amount0.mul(reserve1).div(reserve0)) { IERC20(token1).transfer(msg.sender,amount1.sub(amount0.mul(reserve1).div(reserve0))); amount1 = amount0.mul(reserve1).div(reserve0); } return (amount0,amount1); } function shapeReserves(address token0,address token1,uint amount0,uint amount1) internal view returns (uint,uint) { (uint reserve0,uint reserve1) = UniswapV2Library.getReserves(router.factory(),token0,token1); if (amount0 > amount1.mul(reserve0).div(reserve1)) { amount0 = amount1.mul(reserve0).div(reserve1); } else if (amount1 > amount0.mul(reserve1).div(reserve0)) { amount1 = amount0.mul(reserve1).div(reserve0); } return (amount0,amount1); } function fromPair(address pair,uint amount) external view returns (uint) { require(IUniswapV2Pair(pair).token0() == router.WETH() || IUniswapV2Pair(pair).token1() == router.WETH()); (uint amount0,uint amount1) = UniswapV2LiquidityMathLibrary.getLiquidityValue(router.factory(),IUniswapV2Pair(pair).token0(),IUniswapV2Pair(pair).token1(),amount); uint samount0; uint samount1; address changeToken = IUniswapV2Pair(pair).token0() == router.WETH() ? (IUniswapV2Pair(pair).token1()) : (IUniswapV2Pair(pair).token0()); (uint ethAmount,uint changeAmount) = IUniswapV2Pair(pair).token0() == router.WETH() ? (amount0,amount1) : (amount1,amount0); (,uint reserve) = UniswapV2Library.getReserves(router.factory(),changeToken,router.WETH()); (uint reserveIn,uint reserveOut) = UniswapV2Library.getReserves(router.factory(),changeToken,router.WETH()); (uint reserve0,uint reserve1) = UniswapV2Library.getReserves(router.factory(),token,router.WETH()); if (checkReserves(changeToken,router.WETH(),changeAmount,reserve.sub(ethAmount)) && UniswapV2Library.getAmountOut(changeAmount,reserveIn.sub(changeAmount),reserveOut.sub(ethAmount)) >= MIN_ETH) { samount0 = swapPrice(router.WETH(),token,ethAmount); reserve0 = reserve0.sub(samount0); reserve1 = reserve1.add(ethAmount); samount1 = UniswapV2Library.getAmountOut(changeAmount,reserveIn.sub(changeAmount),reserveOut.sub(ethAmount)); } else { samount0 = swapPrice(router.WETH(),token,ethAmount.div(2)); reserve0 = reserve0.sub(samount0); reserve1 = reserve1.add(ethAmount.div(2)); samount1 = ethAmount.div(2); } (samount0,samount0) = shapeReserves(token,router.WETH(),samount0,samount1); return calcLiquidity(pair,samount0,samount1,reserve0,reserve1); } function calcLiquidity(address pair,uint samount0,uint samount1,uint _reserve0,uint _reserve1) internal view returns (uint) { uint _totalSupply = IERC20(pair).totalSupply(); uint liquidity; if (_totalSupply == 0) { liquidity = Math.sqrt(samount0.mul(samount1)).sub(10**3); } else { liquidity = Math.min(samount0.mul(_totalSupply) / _reserve0, samount1.mul(_totalSupply) / _reserve1); } return liquidity; } function swapPrice(address tokenIn,address tokenOut,uint amount) internal view returns (uint) { address[] memory path = new address[](2); path[0] = tokenIn; path[1] = tokenOut; return UniswapV2Library.getAmountsOut(router.factory(),amount,path)[1]; } function getTokenPrice(address pair) external view returns (uint) { require(IUniswapV2Pair(pair).token0() == router.WETH() || IUniswapV2Pair(pair).token1() == router.WETH()); address pairtoken = IUniswapV2Pair(pair).token0() == router.WETH() ? (IUniswapV2Pair(pair).token1()) : (IUniswapV2Pair(pair).token0()); (uint reserve0,uint reserve1) = UniswapV2Library.getReserves(router.factory(),IUniswapV2Pair(pair).token0(),IUniswapV2Pair(pair).token1()); uint price = IUniswapV2Pair(pair).token0() == router.WETH() ? (reserve0.mul(1e18).div(reserve1)) : (reserve1.mul(1e18).div(reserve0)); return price.div(1 ** IERC20(pairtoken).decimals()); } function getTokenSymbol(address pair) external view returns (string memory) { require(IUniswapV2Pair(pair).token0() == router.WETH() || IUniswapV2Pair(pair).token1() == router.WETH()); address pairtoken = IUniswapV2Pair(pair).token0() == router.WETH() ? (IUniswapV2Pair(pair).token1()) : (IUniswapV2Pair(pair).token0()); return IERC20(pairtoken).symbol(); } }